245 research outputs found

    Cultural influences and the mediating role of socio-cultural integration processes on the performance of cross-border mergers and acquisitions

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.This paper reports findings from a longitudinal case study (2005–2011) of a merger between an Austrian and a German energy provider. I develop a model of socio-cultural integration processes based on an analysis of critical incidents expressed in 71 problem-centred interviews and observations with acquired and acquiring employees at four different points of time: immediately before the takeover and during the first negotiation talks, and one, three and six years after the takeover. The findings suggest that the relationship between national and organizational cultural differences and M&A outcomes is mediated by socio-cultural integration processes defined in terms of the formation of interpersonal relationships, trust and shared identity. Based on these findings I formulate specific propositions and build an evidence-based model of M&A socio-cultural integration processes that guides future research and practice

    R-parity-violating SUSY and CP violation in B --> phi K_s

    Full text link
    Recent measurements of CP asymmetry in B --> phi K_S appear to be inconsistent with Standard Model expectations. We explore the effect of R-parity-violating SUSY to understand the data.Comment: Equations corrected. Conclusions unchanged. Latex, 6 pages, one fi

    Coupled channel description of 16O+142,144,146Nd scattering around the Coulomb barrier using a complex microscopic potential

    Get PDF
    Angular distributions of elastic scattering and inelastic scattering from 2+ 1 state are measured for 16O+142,144,146Nd systems at several energies in the vicinity of the Coulomb barrier. The angular distributions are systematically analyzed in coupled channel framework. Renormalized double folded real optical and coupling potentials with DDM3Y interaction have been used in the calculation. Relevant nuclear densities needed to generate the potentials are derived from shell model wavefunctions. A truncated shell model calculation has been performed and the calculated energy levels are compared with the experimental ones. To simulate the absorption, a 'hybrid' approach is adopted. The contribution to the imaginary potential of couplings to the inelastic channels, other than the 2+ 1 target excitation channel, is calculated in the Feshbach formalism. This calculated imaginary potential along with a short ranged volume Woods-Saxon potential to simulate the absorption in fusion channel reproduces the angular distributions for 16O+146Nd quite well. But for 16O+142,144Nd systems additional surface absorption is found to be necessary to fit the angular distribution data. The variations of this additional absorption term with incident energy and the mass of the target are explored. © 2003 Elsevier Science B.V. All rights reserved

    New-Physics Effects on Triple-Product Correlations in Lambda_b Decays

    Full text link
    We adopt an effective-lagrangian approach to compute the new-physics contributions to T-violating triple-product correlations in charmless Lambda_b decays. We use factorization and work to leading order in the heavy-quark expansion. We find that the standard-model (SM) predictions for such correlations can be significantly modified. For example, triple products which are expected to vanish in the SM can be enormous (~50%) in the presence of new physics. By measuring triple products in a variety of Lambda_b decays, one can diagnose which new-physics operators are or are not present. Our general results can be applied to any specific model of new physics by simply calculating which operators appear in that model.Comment: 20 pages, LaTeX, no figures. Added a paragraph (+ references) discussing nonfactorizable effects. Conclusions unchange

    A microscopic complex potential description of elastic, inelastic cross section in the Coulomb nuclear interference region in the 28Si on 28Si system

    Get PDF
    Elastic and inelastic angular distribution and excitation functions were measured for the 28Si + 28Si system in the vicinity of the Coulomb barrier. While the elastic data could be described very well by using fully microscopic complex potential, the inelastic cross sections were found to be more sensitive to small variations in the potential. In particular the Coulomb nuclear interference dip observed in the inelastic excitation functions could not be fitted satisfactorily with calculation. Inclusion of an energy dependent term of Gaussian shape to the associated matrix element with the reorientation coupling in the phenomenological calculations leads to a better fit the inelastic excitation functions. © 1998 Elsevier Science B.V

    Study of α-transfer reaction 28Si( 7Li, t) 32S

    Get PDF
    The 28Si( 7Li, t) 32S reaction has been studied at 48 MeV. Using a αt potential overlap based on a microscopic cluster model, the full finite-range distorted wave Born approximation analysis was carried out for nine low-lying states; 0.0 MeV (0+), 2.23 MeV (2+), 3.78 MeV (0+), 4.46 MeV (4+), 5.01 MeV (3-), 5.80 MeV (1-), 6.76 MeV (3-), 7.43 MeV (1-) and 8.49 MeV (1-) of the residual nucleus. A re-analysis was also done for the same states of 32S having an αd overlap for the reaction 28Si (6Li, d) 32S at 75.6 MeV. Theoretical spectroscopic factors have been calculated for the measured even-parity states of 32S using the shell model code OXBASH. The spectroscopic factors were compared for both the reactions

    Inclusive and exclusive measurements in the projectile breakup of 7Li

    Get PDF
    The inclusive and exclusive measurements were carried out for 7Li projectile breakup on 27Al target at 48 MeV. In the inclusive data we have observed a broad peak around the beam velocity for alphas and tritons. The exclusive data for alpha-triton coincidences show good agreement with the post-form DWBA theory of breakup reactions

    Wide-angle α-t coincidence measurement in the breakup of 7Li on 27Al

    Get PDF
    We have performed wide-angle in-plane coincidence measurements of the alpha particles and tritons emitted in the 48-MeV 7Li projectile breakup reaction on 27Al. The data have been analyzed using the post-form distorted-wave Born-approximation (DWBA) theory of breakup reactions where Coulomb and nuclear breakup as well as their interference terms are included. The theory is able to provide a good description of the experimental data particularly at large relative angles between the fragments. The interference between the Coulomb and nuclear breakup modes is found to be significant

    Scaling analysis of electron transport through metal-semiconducting carbon nanotube interfaces: Evolution from the molecular limit to the bulk limit

    Full text link
    We present a scaling analysis of electronic and transport properties of metal-semiconducting carbon nanotube interfaces as a function of the nanotube length within the coherent transport regime, which takes fully into account atomic-scale electronic structure and three-dimensional electrostatics of the metal-nanotube interface using a real-space Green's function based self-consistent tight-binding theory. As the first example, we examine devices formed by attaching finite-size single-wall carbon nanotubes (SWNT) to both high- and low- work function metallic electrodes through the dangling bonds at the end. We analyze the nature of Schottky barrier formation at the metal-nanotube interface by examining the electrostatics, the band lineup and the conductance of the metal-SWNT molecule-metal junction as a function of the SWNT molecule length and metal-SWNT coupling strength. We show that the confined cylindrical geometry and the atomistic nature of electronic processes across the metal-SWNT interface leads to a different physical picture of band alignment from that of the planar metal-semiconductor interface. We analyze the temperature and length dependence of the conductance of the SWNT junctions, which shows a transition from tunneling- to thermal activation-dominated transport with increasing nanotube length. The temperature dependence of the conductance is much weaker than that of the planar metal-semiconductor interface due to the finite number of conduction channels within the SWNT junctions. We find that the current-voltage characteristics of the metal-SWNT molecule-metal junctions are sensitive to models of the potential response to the applied source/drain bias voltages.Comment: Minor revision to appear in Phys. Rev. B. Color figures available in the online PRB version or upon request to: [email protected]

    Analytical study of non-linear transport across a semiconductor-metal junction

    Full text link
    In this paper we study analytically a one-dimensional model for a semiconductor-metal junction. We study the formation of Tamm states and how they evolve when the semi-infinite semiconductor and metal are coupled together. The non-linear current, as a function of the bias voltage, is studied using the non-equilibrium Green's function method and the density matrix of the interface is given. The electronic occupation of the sites defining the interface has strong non-linearities as function of the bias voltage due to strong resonances present in the Green's functions of the junction sites. The surface Green's function is computed analytically by solving a quadratic matrix equation, which does not require adding a small imaginary constant to the energy. The wave function for the surface states is given
    • …
    corecore